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A problem of point explosion in an almost ideal gas is considered. A virial 
power expansion in terms of the parameter b PO representing the product of 

the gas density and the “internal volume” of the molecules, is used as the 
equation of state. The passage to the ideal gas problem is considered. It is 

shown that when the motion is adiabats then for arbitrarily small values of 

b pp. a region of dimension r - ‘0 I/& exists near the focus of explosion, 

in which the dimensionless velocity profile differs from the ideal gas profile 

( 0 (1j in particular is found to be a nonmonotonous function of the coordi- 

nate). Further it is shown that, in contrast to the adiabatic motion, a uniform 

passage to the case of an ideal gas exists in a heat-conducting gas. 

1. When a strong explosion takes place, the character of the motion of the substance 

depends essentially on its equation of state. In the case of a strong point explosion the 

motion is found to be self-similar for a wide class of equations of state. Such a motion 

was studied originally for the case of an ideal gas ; subsequently, examples of solutions 

for the explosion problem were given for certain real, thermodynamically imperfect 
media [l - 33. It should however be noted that the study of explosions in the media 
differing from the ideal gas did, as a rule, involve empirical equations of state, which 
only describe the behavior of the medium satisfactorily in a certain, limited interval 

of densities. Almost every one of these empirical equations was found to be incorrect 
in the low density region and, in the limit when p -t 0 , it either did not reduce to the 
equation of state for the ideal gas, or yielded an incorrect first term of the so-called 
virial expansion for the pressure in powers of density. 

As we know from the statistical physics, at low densities the equation of state can be 

writtenin*eformc4’ P=~RT(~$~B(T)-~-~ZC(T).~....] (1.1) 

where B (I’) and C (T) are virial coefficients which can be determined if the molecu- 

lar interaction potential is known. In the high temperature range, considerably exceed- 

ing the critical temperature of the substance (this case will be considered below), the 
coefficients B (T) and C (T) tend to constant values equal to 0 and jlab2 respectively. 
The quantity (mb) “’ is of the same order as the radius of action of the intermolecular 
rep&ion forces, therefore for gases we have bp -sg 1. It can easily be verified that in 
the limit when p + 0 , the equations of state considered in @] do not transform to an 

expression of the form (1.1). Therefore the question of distribution of the hydrodyna- 
mic variables in the low density region in a medium perturbed by a strong explosion, 
remains unsolved. 
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Below we consider a strong point explosion in an imperfect gas of initial density p. 
satisfying the inequality bf,,, < I. At first we assume that the initial motion of the per- 
turbed medium is adiabatic. It shall be shokn that in such a problem a uniform limit- 

ing passage to the case of an ideal gas i!: z 01 does not take place. Actually, at the 
center of explosion (where, as expected, the equation of state for the medium approxi- 

mates to the equation of state for the ideal gas most closely) a region exists, for arbit- 
rarily small values of 6p, I the size of which is 7 - rC j/.8& (where rz is the radius of 

the shock wave front) and in which the velocity distribution differs from that in the ideal 

gas. 
The change in the velocity profile near the center of explosion in an almost ideal 

gas is not necessarily physically observable. It should also be kept in mind that in the 
nonadiabatic case, the equations of motion behave differently at bp, -+ 0 , 

Below we show that when the transfer of heat by thermal conduction is taken into 
account, then the solution of the problem under consideration reduces smoothly to that 

for the ideal gas, Moreover it can easily be shown that, when the condition that the 

motion is adiabatic is replaced by the condition that it is isothermal, ~Il’irlr -: 0 and 
no rearrangement of the velocity profile takes place during the limiting passage from 

the almost ideal to the ideal gas case, The examples considered below show just how 
sensitive the self-similar solution of the problem of a strong explosion is to arbitrarily 

small cha’nges in the equation of state, and the consequent necessity for a careful choice 

of the thermodynamic model of the medium. 

2. Let us consider the adiabatic motion of the gas. The properties mentioned above 
appear even when the first term of those contained in the brackets in (1.1) is taken into 

account, and therefore it is sufficient to consider the equation of state in the form 

p = f’l: I’ (I f &J (2. I : 

The heat capacity of the gas is assumed to be constant. By introduction of the self- 

similar variables i? = 1. {_+_\% jl 

i* I:t’ I, 
*r ,>., -- -- - 

:A, 

where E is the energy of explosion, the problem of motion of the medium can he redu- 
ced to two algebraic relations (the energy and adiabatic integrals Cl]) and one first 

order ordinary differential equation [I - 35, The complete system of equations is 

where *; is the ratio of specific heats at p ‘I: 0, and the subscript 2 denotes the quan- 

tities directly behind the shock wave front. Taking into account the smaliness of the 

parameter u. we can write the boundary conditions at the shock wave in the form 
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‘; I 1 2x 
8:= T(_, - I-- ( ) ;‘-_i 9 

\’ = i(l -“z/(T--i)) 
2 

5(r+f) ’ 
n, = -& (2.5) 

The constant ii? must be defined from the condition of equality of the total energy Of 

rhe medium and the energy of explosion A’. The ratio of specific heats ‘y, which in this 

case rtlttst not be confused with the adiabatic exponent, varies within i < y < 5/s. 
f:igure 1 depicts the plane of integral curves of (2.4). Only that part of the phase plane 

of the gV variables is shown which corresponds 

A+:: 

to the physically realizable states of the medium. 
Arrows of the trajectories indicate the direction 

of decreasing h. It is expedient to eliminate 

/ ,’ 
the parameter a from (2.4) by making the sub- 

/ 

/ ,/ /. .--a -: 

stitution g, I= ag (the parameter obviously re- 

mains in the integrals (2.1) and (2.2) and in the 

K.:f-+ 

boundary conditions (2.5)). The singular point 

A (0. a/,,) is a saddle point with the asymptotes 

:’ : == 0 and V = a!~. The singular point B (0, 

G 
2 :) -;-I) is a node and corresponds to the center 

_ ,!I of symmetry )r. = 0. The characteristic direc- 

tiom at R are straight lines g, = 0 and V = 

Fig. 1 2:‘., I’-’ (1 - g. * q;-I.). The differential equation 
(2.4) written in the vicinity of the point B dif- 

fers from the corresponding equation for an ideal gas by the additional term 3vZg, ap- 
pearing in the numerator of the right-hand side. The addition of such a term causes, as 

we know from [S]. a rotation of the whole plane of integral curves near the singular 

point through a certain angle (in the present case the angle of rotation is arctg y-1). As 

a result of this rotation, the dimensionless velocity 1’ (1.) approaches its asymptotic value 
of s/s y-1 at the center of symmetry from below, i.e. the dintensionless velocity profile 
ceases to be monotonous (in the case of ideal gas the profile is monotonous and has the 

minimal value of Z/5y-’ ). 

The transformation from the phase plane ;,C. to the physical space is carried out by 

means of the integrals (2.1) and (2.2). For the velocity I, (1.1 near the center of sym- 
metry we obtain the following asymptotic formula: 

v (A) - 2,; y-1 _ ah:L-.” 
(2.6) 

where a > 0 is a constant (in the case of an ideal gas we have [ 1] V (2.) - ‘,‘; y-l -t 

c ~L(2y’-1)!(-‘-1’, c > 0). By taking into account the second term in the expansion (2.6) 
we can show, that the function V (k) reaches its minimum value at 

and the value of 1’ 0.) at its minimum differs from its limiting value d;,,T;-l by a quan- 
tity of the order of oCc:-lt) 2(1-1) 

When the parameter a defining the nonideal character of the medium tends to zero, 

the velocity asymptotics near the center do not become the ideal gas asymptotics. 
However, the interval of values of the variable h in which the behavior of 1 (i.) is “non- 

ideal”, tends to zero as I’a when a .-.. 0 . The asymptotic formulas for the dimension- 
less density and pressure near the center of explosion coincide (unlike those for the 
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velocity) with the corresponding formulas for the ideal gas when a - 0. 

3. We consider a strong self-similar explosion in an ideal, heat-conducting gas 

whose equation of state is (1.1). Let m introduce the self-similar variables 

where u is a pure number defined from the condition of equality of the energy of ex- 

plosion and the total energy of the perturbed medium. The requirement that the motion 

be self-similar imposes restrictions on the dependence of the thermal conductivity on 

the temperature. By [l] we must set x = x, T”#. where x1 > 0 is a constant. 
Taking into account the fact that the problem considered here has an energy integral 

p], we can use the gasdynamic equations to derive the following system of ordinary 

differential equations (a prime denoting differentiation with respect to 5) 

V’g W - J. (r + 111 + g’B (7 - 1 + 22g) + t)‘g (T - 1 + xg) = s/a (r + 1) vg 

?-J--1 V’g + g’ v- -+ 
i 

h +2x=0 ) vg 

Be’/%, z s(r- 1 +zg)Vg&6(h-$- (6 + VS) g 

(Ii) 

B = 6x,2’!* (y - 1)“~~ (r + ~)-‘/a 
- (&)‘/t R’/‘ (0_4&% ’ a = bpo (7 + I) 

The system (3.1) must be solved under the following boundary conditions : 

T+l ( 2 

T--i f- r+i vz @==I, 
) i 

2 
1-- 7-ti Va = 

) -$$-6a(1 +*gs 
) 

and the symmetry condition V (0) = 0. 

According to the results of Sect.2, the motion of gas near the center of symmetry is 
of particular interest, i.e. in the region in which the adiabatic motion gives rise to an 

additional term in the asymptotic formula. namely the term preventing a smooth pas- 

sage to the ideal gas formulas. Using (3.1) to compute the asymptotics of the gasdyna- 

mic variables as A. - 0. we obtain the following formulas for the dimensionless velo- 

city, demity and temperature : 
v = (r + I)* (7 - 1 + W 0 

5B8”‘Cl (7 - 1 + 23Lgo) 

A8 

[ 

30 - 1 + ago) 
g = go * -+ I360’/* (7 - 1 + 2ago) 

A2 

I 

9=&J i-- 
IT 

3go ia 
m'/e 

I 

(3.2) 

Here go and I& denote the dimensionless density and temperature at the center of sym- 
metry (when T = 1.4 and B = 1.411, we have, according to [2], go= 0 052 and 6,=2.04). 
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Formulas (3.2) show that when the parameter a tends to zero, the limiting expressions 
for an almost ideal gas pass smoothly to the cortesponding expre.uions for the ideal gas. 
Thus, by taking the heat conduction into account we can obtain not only a finite value 

for the temperature at the center of explcsion, but also a correct limiting passage from 
the imperfect to the ideal gas case. Corrections to the solution of the poblem of explo- 

sion in an ideal thermally conducting gas caused by the nonideal character of the me- 
dium can be easily obtained from the system (3.1). 
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We investigate the statistical characteristics of trajectories of a (scalar, vector, tensor) 

random field u generated by independently distributed sources. Formulas obtained for 

the trajectcry of a component u of such a field along an arbitrary straight line zo, de- 

fine the mean values of the following characteristics (see Fig. 1) : I+ = 1+ (T) and I = 
r (r) are the distances between two neighboring upcrossings and downcrossings of the 

level 7; t = & (t) is the duration of an up- 

wards excursion across z , while h+ = A+ Ix) 
and A--= A- IX) are distances separating the 
consecutive points on the trajectory posses- 

sing the same first order derivative with 
respect to x , with positive and negative 

ctnvature, respectively. The formulas differ 
from those given by the general mathemati- 
cal theory of trajectcries of stationary ran- 

Fig. 1 
dom processes; they can be applied in prac- 
tice to obtain the characteristics of traject- 


